IIUC ONLINE CONTEST 2008 Problem I: Tri-Isomorphism
 Input: standard input
 Output: standard output

Let $V(G)$ be the vertex set of a simple graph \& $E(G)$ its edge set. An Isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if \& only if $f(u) f(v) \in E(H)$. We say, G is isomorphic to H if there is an isomorphism from G to H .

A complete graph is a simple graph whose vertices are pairwise adjacent: the unlabeled complete graph with n vertices is denoted K_{n}. For example, the following figure shows K_{5}.

Finally, a decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Now, given a positive integer \mathbf{n}, you are to determine if K_{n} decomposes into three pairwiseisomorphic subgraphs.

Input

First line of each test case consists of a positive integer $\mathbf{n}(n<=100)$. The end of input will be indicated by a case where $n=0$. This case should not be processed.

Output

For each test case, print YES if K_{n} can be decomposed into three pairwise-isomorphic subgraphs \& NO otherwise.

Constraints

```
- n<100
```

Sample Input	Output for Sample Input
4	YES
5	NO
0	

