
Libro de Problemas

Organizado por la Universidad Complutense de Madrid y patrocinado por

A
Caper pizza

caperpizza.{c,cpp,java}

Brunno Doiuna is very fond of caper pizzas, which he always likes to share with his girlfriend. As she also
loves capers, it is of the utmost importance, in order to avoid unnecessary quarrels, to split the pizza into
two equally-sized slices in such a way that each half contains exactly the same number of capers. However,
most caper pizzas also contain a number of peppercorns, and neither Brunno nor his girlfriend likes them.
Therefore, it is also crucial that each of the two halves contain the same number of peppercorns. As you can
easily observe, depending on the position of capers and peppercorns on the pizza, it is not always possible
to make a straight-line cut into the pizza in such a way that the two slices have the same area and the same
number of capers and peppercorns lie in each resulting piece. Your task is to design a program to decide if
it is possible to make such a cut or not, knowing the positions of capers and peppercorns.

Input Description

We will assume that the pizza is circular and is centered at the origin, and is big enough to contain
all capers and peppercorns. We also assume that there is an even number of capers and an even number
of peppercorns, and that no cut goes through any of the capers or pepper balls. Additionally, no pair of
peppercorns, capers, or a peppercorn and a caper are aligned with the origin, or form an angle of less than
10−6 degrees with the origin.

There can be multiple test cases, one after the other. The first line of a test case contains two even
integers c ≥ 0 and p ≥ 0 (where 2 ≤ c + p ≤ 30000) separated by a space, the number of capers and
peppercorns, respectively. Each of the following c lines describes the position of a caper using two floating
point numbers, separated by a space, representing its x and y coordinates. Each of the next p lines holds
two floating point numbers, the x and y coordinates of a peppercorn. A blank line follows each test case.

The last line of input will contain −1 − 1. This marks the end of input – do not write any output for
this special last line.

Output Description

Y ES for a positive answer, NO otherwise.

Sample Input

2 2
1 1
1 0
0 1
-1 1

2 2
1 1
-1 1
0 1
0.1 -1

-1 -1

Sample Output

NO
YES

B
Grasshopper

grasshopper.{c,cpp,java}

We are at a funfair, where an array of trampolines, named ”The Grasshopper Labyrinth”, catches our
attention. As the figure below shows, all of them are labelled with non-negative integers:

People are inside, jumping from one trampoline to another, trying to reach the trampoline in the northwest
corner, where the exit to the attraction is located. If you reach the exit fast enough, you may win a prize.
However, in order to be eligible for the prize, you must abide by the following rule: after leaping from a
trampoline labelled with z, you need to get to another one z trampolines away, in the same row or column.

Therefore, your problem is to find the shortest path from any trampoline to the way out, measured by
the number of leaps needed. Since the length of the jump from any trampoline is given, it is sufficient to
label each trampoline with the direction of the best jump from it.

∗ ⇓ ⇐ ∞
⇒ ⇒ ⇑ ⇐
⇑ ⇒ ⇑ ⇐

For a given starting position, a path is considered shorter than another if it requires a smaller number of
jumps; in case of a tie, the path whose first step gets you northmost in the array is to be preferred; and in
case of a tie, the one getting you westmost.

Instead of these symbols, we are using the plain text ones: the appropriate cardinal point (’N’, ’S’, ’E’
or ’W’) for the arrows, ’X’ for the trampolines without possible escape, and the asterisk ’*’ for the special
trampoline at the upper left position, which represents the exit.

Input Description

Several cases are given in a single test file. The first line in each test case contains a pair of integers between
1 and 50, separated by a single space; the first is the number of rows and the second the number of columns
in the matrix. Then, the entries in the matrix follow, line by line, each element being a non-negative integer,
again separated by single whitespace characters. A 0 × 0 matrix will denote the end of the test cases, and
hence should not be analyzed.

Output Description

The expected output of each data case is a character matrix. Each element is one of the allowed charset,
“N”, “S”, “E”, “W”, “X” or “*”, as described above. The output for each case is followed by a blank line.

Sample Input

3 4
0 2 2 5
3 1 1 2
2 2 2 1
1 20
0 3 3 3 2 5 10 5 3 4 5 4 4 4 6 4 10 3 5 1
5 6
0 7 2 4 4 4
3 1 3 2 3 1
2 1 4 3 4 3
4 4 2 3 3 3
5 4 4 3 4 5
0 0

Sample Output

*SWX
EENW
NENW

*EEWWWXWWWWWWWWWXWWW

*XWSWX
ESSWSW
NWXWWX
EEEWNW
XXNNNX

C
Party Night

party.{c,cpp,java}

Today is the town’s celebration day, on which tradition dictates that all townspeople go partying. Each of
them should attend a party at one of the pubs, and dance and drink to the point of intoxication. Later on,
once all the parties have come to an end, after-parties start being thrown at other pubs, and every villager
then goes to one. In order for the villagers to make as many acquaintances as possible, no two of them
attend the same two parties.

Needless to say, such practice causes everyone to have a severe blackout regarding the events of the night,
but people are still curious to know what happened. Unfortunately, all they seem to be able to remember
is who coincided with them at some point, but they have serious trouble identifying when or where. And as
their memory of even this piece of information may be shaky (to say the least), they need help in figuring
out whether all their recollections are consistent or if, on the contrary, some of the townspeople must have
made a mistake (either by failing to remember someone else who was there, or by incorrectly thinking they
met someone they didn’t). Can you help them?

For example, in a town of 4 people, if we are told that villagers 0, 1 and 2 all met one another, and
villagers 2 and 3 met as well, the data is consistent because there might have been parties P0 and P1, and
after-parties A0, A1 and A2, such that person 0 went to P0 and A0, person 1 to P0 and A1, person 2 to P0
and A2, and person 3 to P1 and A2; this arrangement satisfies all required conditions. However, if persons
0 and 3 claimed to have met too, the data would become inconsistent.

Input Description

The input file will contain several test cases. Each of them begins with a line containing two integers:
1 ≤ n ≤ 100, the number of villagers; and 0 ≤ m ≤ 1000. m lines follow, each containing a pair of integers i
and j, 0 ≤ i, j < n, i 6= j, meaning that persons numbered i and j remember having been together in a pub.
No pair of people will appear twice.

Different test cases will be separated by a blank line. A line with n = m = 0 signals the end of the input.

Output Description

For each test case, print “YES” if there is a configuration of parties, after-parties, and villagers attending
them under the conditions described, such that the pairs of people who met each other are exactly those in
the input data. Print “NO” otherwise.

Sample Input

4 4
0 1
0 2
1 2
2 3

4 5
0 1
0 2
1 2
2 3
0 3

7 11
0 1
0 2
0 4
1 3
1 5
1 6
2 4
2 5
3 5
3 6
5 6

0

Sample Output

YES
NO
YES

D
Pachinko

pachinko.{c,cpp,java}

The game of Pachinko has been all the rage in Japan for nearly a century. The game is played by shooting
a metal ball into a special gaming device, depicted below. The ball then falls from somewhere at the top of
the board, bouncing against a series of obstacles on its way down. If the player is lucky, the ball goes into
one of the pockets, and additional balls are released as a jackpot. Otherwise, the ball is lost (and the game
as well).

In the Pachinko parlour I Control the Physics Core, the machine boards
are rectangular, and the player can drop the ball from any point at a height
of 100 centimetres, corresponding to points with cartesian coordinates
(x, 100), where −100 < x < 100. Obstacles are segments defined by the
coordinates of their endpoints. There are neither horizontal nor zero-length
obstacles, and they do not intersect one another. For our purposes, we
can assume that the ball is a point with no thickness, and we ignore
issues of friction, inertia or ricochets. In particular, we can disregard
the horizontal displacement of the ball during falls. There is only one
jackpot pocket, located at the bottom of the board, between coordinates
(−10, 0) and (10, 0). If the ball falls exactly in one of the endpoints, we
consider that it hits the jackpot; and if a ball falls exactly into one of the
endpoints of a segment, it rolls on that segment, rather than falling through.

Some of the machines at the ICPC parlour have long been suspected of being rigged, as rumour has
it that nobody has ever hit the jackpot. A neutral committee has therefore been appointed to verify or
refute this claim. As a member, you have taken part in discussions and game trials, all of which have been
inconclusive. Much as you enjoyed playing the game for free, after enduring several of the endless meetings
you decide it is about time the matter was settled once and for all. To this end, you have taken on the task
of writing a program to determine whether the jackpot is reachable or not, based on the specifications of the
Pachinko device.

Input Description

Your program will be tested on one or more machines. The description of each machine starts with an
integer n (0 ≤ n ≤ 500), indicating the number of segments in it. Each of the following n lines describes
a segment by giving 4 real numbers x y x′ y′, representing the coordinates (x, y) and (x′, y′) of each of its
endpoints, where −100 < x < x′ < 100, 0 < y < 100, 0 < y′ < 100, y 6= y′. No two segments intersect. A
blank line follows each case. The last line of input contains -1.

Output Description

For each machine, answer yes if the jackpot is reachable and no otherwise.

Sample Input

2
-20 60 20 85
-20 35 10 5

2
-5 50 -20 25
5 50 20 25

7
-20 80 -10 75
-15 65 5 70
15 75 25 80
-5 65 10 45
-20 55 -5 40
-15 20 10 35
15 30 25 20

-1

Sample Output

yes
yes
no

E
Lexicographical ranking

ranking.{c,cpp,java}

As is well known, an alphabet is a standardized set of letters, and a word is the smallest free form in a
language; it can be written as a sequence of letters and symbolizes a meaning. Letters, as elements of
alphabets, have a prescribed order, generally known as alphabetical order. The principle behind extending
the alphabetical order to words (lexicographical order) is that all words in a list beginning with the same letter
should be grouped together, and before any words starting with a letter that comes later in alphabetical
order; within a group of all words starting with the same letter, all words beginning with the same two
letters shall be grouped together, and so on; thus, when comparing two words for lexicographical order, the
ordering is determined by the alphabetical order of the two letters at the position where the two words first
differ. If a word is a prefix of another, the former comes before the latter.

Here we are interested in a generic kind of words, bearing no relation with any specific language. Each
of such, let’s say, pseudo-words will be an ordered subset of letters (that is to say, no letter is repeated and
it does not matter whether the word has a meaning in any actual language or not). As the set of available
letters we will use the lower case (also called minuscule) form of the Latin alphabet, along with their standard
alphabetical order:

a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z

Your task is to calculate the position of a given string (its rank) in the list of all the pseudo-words we
can generate by using only characters of the string (remember that all of them are different), sorted in
lexicographical order, as well as to find the pseudo-words corresponding to one or more given ranks.

Input Description

The input consists of several test cases. The first line, for each of them, contains a string of (distinct)
characters of the Latin alphabet in lower case (‘a - z’). The length of such a string will be between 1 and
20, inclusive. The following lines will contain an integer between 1 and the total number of pseudo-words
that is possible to form with the letters of the string, until a new string is found or the input file ends.

Output Description

For each test case, output a line with the rank of the input string in the list of all pseudo-words, and
then print in a line by itself each of the pseudo-words ranked at the positions of the corresponding input
numbers.

Sample Input

cadb
1
64
38
13
23
abcdefghijklmnopqrst
1
21

Sample Output

38
a
dcba
cadb
adb
bc
20
a
abcdefghijklmnopqrt

F
Trust groups

groups.{c,cpp,java}

The personnel department of Association of Cookie Monsters (ACM) has noticed that the productivity of
various work groups in the company is not as good as it could be. They have interviewed the employees in
the affected groups and they have detected the root of the problem: trust (or, rather, the lack thereof). Some
employees do not trust the rest of the group, and this is decreasing their motivation and happiness. The
personnel department wants to solve this problem, and has decided to reorganize the groups so that they
are stable, i.e., they are formed by people who trust each other. They have asked the employees, and they
know the people each employee trusts directly. Moreover, if employee A trusts employee B and employee
B trusts employee C, then employee A will trust employee C. And obviously, each employee trusts himself.
They want to create as few groups as possible to reduce administration overhead (they also do not want to
work too hard).

With this information they have contacted you, and asked you to write a program that finds the minimum
number of stable groups that can be created.

Input Description

The input consists of several test cases. Each test case begins with a line containing two positive integers
P and T (1 ≤ P ≤ 1000, 0 ≤ T ≤ 999000) separated by a single space. P lines come next, each containing
the name of one person. The names will have the following format: surname, a comma, a space and first
name (for example McBride, John or Smith, Peter). Both the surname and the first name will be strings
of uppercase or lowercase characters (with no blanks or punctuation marks), with a maximum length of 10
characters. There will not be repetitions in the complete names of the people. After the names there will
appear T blocks of 2 lines representing the trust relations between people. Each line of the block will contain
the name of a person in the same format as before, and the block will mean that the person in the first line
trusts the person in the second line. All people appearing in the confidence relations will have appeared in
the previous list of P people.

The input will end with the “phantom” test case 0 0, which must not be processed.

Output Description

For each test case, the output will be a line containing a positive integer representing the minimum
number of stable groups of people that can be formed.

Sample Input

3 2
McBride, John
Smith, Peter
Brown, Anna
Brown, Anna
Smith, Peter
Smith, Peter
Brown, Anna
3 2
McBride, John
Smith, Peter
Brown, Anna
Brown, Anna
Smith, Peter
McBride, John
Smith, Peter
0 0

Sample Output

2
3

G
Expensive subway
subway.{c,cpp,java}

Peter lives in Expensive City, one of the most expensive cities in the world. Peter has not got enough money
to buy a car, and the buses in Expensive City are pretty bad, so he uses the subway to go to work. Up
to now, the subway was very cheap: you could travel anywhere with just one $2 ticket. Last month, the
managers decided that it was too cheap so they invented the EFS (Expensive Fare System). With this
system, users can only buy monthly tickets between adjacent stations, which allows them to move between
these stations any number of times. The price of the monthly ticket varies between stations, so the decision
of which tickets to buy must be taken carefully.

With the previous subway plan, the cheapest way to travel from Picadilly to Victoria and Queensway
was to buy the monthly ticket Picadilly-Victoria and Queensway-Victoria, for a total cost of $12.

Peter is a salesperson, so he needs to be able to travel to any part of the city. He wants to spend as little
money as possible, and here is where you come into the picture. He has hired you to write a program that,
given the list of stations, the fares of the monthly tickets between pairs of stations and the station nearest
Peter’s home, returns the minimum amount of money Peter has to spend in order to travel to any other
station. This program also has to return value if it is not possible to go from Peter’s home station to all the
rest, because in this case Peter will begin to consider using buses...

Input Description

The input consists of several test cases. A test case begins with a line containing two integers: 1 ≤ s ≤ 400
(the number of stations) and 0 ≤ c ≤ 79800 (the number of connections) separated by a single space. This
is followed by s lines, each one containing the name of a subway station. These names will be strings
of characters (uppercase or lowercase) without punctuation marks or whitespace characters, and with a
maximum length of 10 characters. After the names of the stations there will be c lines showing the connections
between stations. A connection allows people to travel from one station to the other in both directions. Each
connection is represented as two strings indicating the names of the stations and a positive integer indicating
the cost of the monthly ticket, all of which are separated by single spaces. All names of stations appearing in
the connections will have previously appeared in the list of s stations. The connections will all be different,
and there will not be any connection from a station to itself. The test case will end with a line containing
the name of the station from which Peter needs to travel to all the other stations.

The input finishes with the phantom test case 0 0, which must not be processed.

Output Description

For every test case, the output will be a line containing an integer, the minimum monthly price that
Peter has pay to travel from the given station to all the others, or Impossible if it is not possible to travel
to all the stations.

Sample Input

3 3
Picadilly
Victoria
Queensway
Picadilly Victoria 2
Queensway Victoria 10
Queensway Picadilly 20
Picadilly
4 2
Picadilly
Victoria
Queensway
Temple
Picadilly Victoria 2
Temple Queensway 100
Temple
0 0

Sample Output

12
Impossible

H
Turing

turing.{c,cpp,java}

Some interesting documents have recently been found in the ACM archives. These documents contain an
account of the original version of the ACM ICPC competition, which took place in Bletchley Park, England,
in the year 1943.

In this original contest, programs submitted by contestants were executed in a simplified version of the
so-called deterministic Turing Machine, which undoubtedly most of you are familiar with. In this simplified
version, the tape is not infinitely long. Instead, tape cells are numbered 0 to 103− 1 (inclusive), from left to
right. Also, the alphabet used is the unary alphabet, meaning that, prior to the execution of the program,
the tape will be initialized with the string consisting of n ones followed by all zeroes, where n is the numerical
value of the input, and after execution the tape contents should be m ones followed by all zeroes, where m
is the numerical value of the corresponding output. In the beginning, the tape head is at position 0, and
states are also numbered starting with 0, which is assumed to be the initial state. The machines work as
usual: for every machine state q and every bit c (0 or 1), there is at most one rule determining what the
next state will be if the symbol at the position of the tape head is c and the current state is q; the rule also
specifies the symbol to write at the current position and in which direction the head should move. When no
rule applies, the machine stops.

Your task will be to write a program that receives one of the Turing machines submitted by the con-
testants, as well as the test cases used (input and output pairs), and returns a verdict about the machine’s
results for each of the cases. Note that in this original contest, unlike the current one, there was a different
verdict for each test case, instead of a general one.

Input Description

The input consists of a series of specifications (at most 30) of a Turing Machine and of the corresponding
test cases.

The structure of each test case is the following:
The first line contains 1 ≤ N ≤ 1000, the number of rules for the machine, and 1 ≤M ≤ 100, the number

of test cases for the Turing Machine.
N lines follow, each one containing a rule, in the format qprev cprev qnext cnext mov. qprev is the state of

the machine before the rule is applied, cprev is the content (either 0 or 1) of the tape at the current position
p before the rule is applied, qnext is the state of the machine after the rule is applied, cnext is the content
of position p after the rule is applied, and mov is the direction in which the tape head moves one step after
applying the rule (“L” if it moves to the left and “R” if it moves to the right). The states should be integers
between 0 and 1000, inclusive. The Turing machine should be deterministic; that is, there should be at most
one transition from any pair (qprev, cprev), and should not be repeated in your output.

After this, M lines follow, each one containing two space-separated numbers, X and Y , 1 ≤ X, Y ≤ 1000.
X is the value of the input to the program, and Y is the value of the expected output.

The end of input is signaled by a case with N = 0 and M = 0.

Output Description

Your output should be MLE if the machine attempts to access any cell outside the tape range specified
above; TLE if it runs for at least 104 iterations without stopping or causing an MLE error; WA if the

machine stops but returns an incorrect result, and AC if the machine stops and returns the expected result.
The output for each case should go in a different line.

Sample Input

6 3
0 1 1 0 R
0 0 0 0 R
1 1 1 1 R
1 0 2 1 L
2 1 2 1 L
2 0 900 1 R
1 3
300 301
0 1
0 0

Sample Output

WA
AC
MLE

I
Gnirut

gnirut.{c,cpp,java}

Some interesting documents have recently been found in the ACM archives. These documents contain an
account of the original version of the ACM ICPC competition, which took place in Bletchley Park, England,
in the year 1943.

In this original contest, programs submitted by contestants were executed in a simplified version of the
so-called deterministic Turing Machine, which undoubtedly most of you are familiar with. In this simplified
version, the tape is not infinitely long. Instead, tape cells are numbered 0 to 103− 1 (inclusive), from left to
right. Also, the alphabet used is the unary alphabet, meaning that, prior to the execution of the program,
the tape will be initialized with the string consisting of n ones followed by all zeroes, where n is the numerical
value of the input, and after execution the tape contents should be m ones followed by all zeroes, where m
is the numerical value of the corresponding output. In the beginning, the tape head is at position 0, and
states are also numbered starting with 0, which is assumed to be the initial state. The machines work as
usual: for every machine state q and every bit c (0 or 1), there is a at most one rule determining what the
next state will be if the symbol at the position of the tape head is c and the current state is q; the rule also
specifies the symbol to write at the current position and in which direction the head should move. When no
rule applies, the machine stops.

Unfortunately, only the verdicts of the contest judge were found in the archives, there being no trace of
the Turing machines submitted or the test cases used. Note that in this original contest, unlike the current
one, there was a different verdict for each test case, instead of a general one.

This discovery has caught the attention of the famous adventurer Zaphod Beeblebrox, who intends to
launch a project to construct examples of machines and input/output “files” that might have caused these
verdicts. Not only have all your efforts to make him understand the futility of such an enterprise failed
miserably, but you also have been coerced into writing a program for him that generates such examples. Your
program should receive a series of verdicts about one of the Turing machines submitted by the contestants,
and return the specifications of a Turing machine, as well as a series of test cases, for which the verdicts are
the ones you received.

We consider the output for a machine should be MLE (memory limit exceeded) if the machine attempts
to access any cell outside the tape range specified above; TLE (time limit exceeded) if it runs for at least 104

iterations without stopping or causing a MLE error; WA (wrong answer) if the machine stops but returns
an incorrect result, and AC (accepted) if the machine stops and returns the expected result.

Input Description

The input consists of a certain number (no larger than 30) of series of verdicts. The first line for each
contains 1 ≤ N ≤ 100, the number of verdicts in the case. The following N lines contain one of the words
TLE, MLE, WA and AC.

The end of input is signaled by a case with N = 0, which should not be processed.

Output Description

For a given test case for your program, your output should adhere to the following format:
The first line contains 1 ≤ M ≤ 1000, the number of rules for the machine, and N , the number of test

cases for the Turing Machine.

M lines follow, each one containing a rule, in the format qprev cprev qnext cnext mov. qprev is the state of
the machine before the rule is applied, cprev is the content (either 0 or 1) of the tape at the current position
p before the rule is applied, qnext is the state of the machine after the rule is applied, cnext is the content
of position p after the rule is applied, and mov is the direction in which the tape head moves one step after
applying the rule (“L” if it moves to the left and “R” if it moves to the right). The states should be integers
between 0 and 1000, inclusive. The Turing machine should be deterministic, that is, there should be at most
one transition from any pair (qprev, cprev), and should not be repeated in your output. After this, N lines
follow, each one containing two space-separated numbers, X and Y , 1 ≤ X, Y ≤ 1000. X is the value of the
input to the program, and Y is the value of the expected output.

Note: While this is the recommended syntax, other combinations of new lines and whitespace characters
might also get accepted.

Sample Input

1
AC
0

Sample Output

2 1
0 1 0 1 R
0 0 2 1 R
4 5

