
Problem F Hypercube

Source file name: hypercube.c, hypercube.cpp or hypercube.java

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3). It consists in groups of opposite parallel line segments aligned in each of the space's dimensions, at right angles to each other and of the same length. An n-dimensional hypercube is also called an n-cube.

In parallel computing, the vertexes are processors, and the line segments (edges) represent connections. The n-cube architecture has the following properties:

- Each node has n connections with different processors.
- Each processor has a unique identifier, between 0 and $2^n 1$.
- Two processors are directly connected if and only if their identifiers differ in just one bit. For instance, in a 3-cube, processors 3 (011 in binary) and 7 (111 in binary) are directly connected.
- The number of processors is 2^n

The new company WEFAIL is designing hypercubes, but they are always contracting new people, whose do not know all the hypercube properties, and sometimes they fail; thus these properties are not satisfied in all cases.

Given an arbitrary graph, your task is to write a program that determines whether the graph is a hypercube or not.

Input

The input consists in several problem instances. Each instance contains one graph, which starts with a line with two positive integers: K and M, representing the number of vertexes $(0 < K \leq 1024)$ and the number of edges respectively. It follows $(0 \leq M \leq 5130)$ lines, representing the edges. Each edge is given by two 32 bits integers, representing the processors connected by the edge.

The end of input is indicated by a test case with K = 0.

The input must be read from standard input.

Output

For each problem instance, the output is a single line, with the word "YES" if the corresponding graph is a hypercube, and "NO" otherwise (quotes for clarity).

	The output	must be written	to standard	output.
--	------------	-----------------	-------------	---------

Sample input	Output for the sample input
4 4	YES
0 1	NO
1 3	NO
2 0	
3 2	
2 1	
1 4	
3 2	
0 1	
1 2	
0 0	