

Consider a sequence of \mathbf{n} integers $<1234 \ldots \mathbf{n}>$. Since all the values are distinct, we know that there are n factorial permutations. A permutation is called K-transformed if the absolute difference between the original position and the new position of every element is at most \mathbf{K}.

Given \mathbf{n} and \mathbf{K}, you have to find out the total number of \boldsymbol{K}-transformed permutations.

So, for the above case, there are 14 2-transformed permutations.

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<20)$ that indicates the number of test cases. Each case consists of a line containing two integers \mathbf{n} and $\mathbf{K} .\left(1 \leq \mathbf{n} \leq 10^{9}\right)$ and $(0 \leq K \leq 3)$.

Output

For each case, output the case number first followed by the required result. Since the result could be huge, output result modulo 73405.

Sample Input	Output for Sample Input
42 Case 1: 14 1000 Case 2: 101 Case 3:89	

Problem Setter: Sohel Hafiz, Special Thanks: Mahbubul Hasan

