Β

## **K-Transformed Permutations**

Input: Standard Input Output: Standard Output



Consider a sequence of **n** integers  $<1 \ 2 \ 3 \ 4 \dots$ **n**>. Since all the values are distinct, we know that there are **n** factorial permutations. A permutation is called *K-transformed* if the absolute difference between the original position and the new position of every element is at most **K**.

Given **n** and **K**, you have to find out the total number of *K-transformed* permutations.

| Exan            | nple: <b>n</b> = 4, <b>K</b> | L = 2        |                                                                  |
|-----------------|------------------------------|--------------|------------------------------------------------------------------|
|                 | 1234                         | <u>Valid</u> | <u>Annotation</u>                                                |
| (position)      |                              |              |                                                                  |
| $\mathbf{P}_1$  | 1 2 3 4                      | Yes          | The original sequence. All the elements are in their original    |
|                 |                              |              | position                                                         |
| $P_2$           | 1 2 4 3                      | Yes          | 3 and 4 are reordered, but each is shifted by 1 position only.   |
| P <sub>3</sub>  | 1 3 2 4                      | Yes          |                                                                  |
| $P_4$           | 1 3 4 2                      | Yes          | 2 is shifted by 2 positions. $2 \le K$ , so it's a valid one.    |
| P <sub>5</sub>  | 1 4 2 3                      | Yes          |                                                                  |
| P <sub>6</sub>  | 1 4 3 2                      | Yes          |                                                                  |
| $P_7$           | 2 1 3 4                      | Yes          |                                                                  |
| P <sub>8</sub>  | 2 1 4 3                      | Yes          |                                                                  |
| P <sub>9</sub>  | 2 3 1 4                      | Yes          |                                                                  |
| P <sub>10</sub> | 2 3 4 1                      | No           | 1 is shifted by 3 positions. $3 > K$ and so this is an invalid   |
|                 |                              |              | permutation                                                      |
| P <sub>11</sub> | 2 4 1 3                      | Yes          | -                                                                |
| P <sub>12</sub> | 2 4 3 1                      | No           |                                                                  |
| P <sub>13</sub> | 3 1 2 4                      | Yes          |                                                                  |
| P <sub>14</sub> | 3 1 4 2                      | Yes          |                                                                  |
| P <sub>15</sub> | 3 2 1 4                      | Yes          |                                                                  |
| P <sub>16</sub> | 3 2 4 1                      | No           |                                                                  |
| P <sub>17</sub> | 3 4 1 2                      | Yes          |                                                                  |
| P <sub>18</sub> | 3 4 2 1                      | No           |                                                                  |
| P <sub>19</sub> | 4 1 2 3                      | No           | 4 is shifted by 3 positions. $3 > K$ and so this is also invalid |
| P <sub>20</sub> | 4 1 3 2                      | No           |                                                                  |
| P <sub>21</sub> | 4 2 1 3                      | No           |                                                                  |
| P <sub>22</sub> | 4 2 3 1                      | No           |                                                                  |
| $P_{23}^{}$     | 4 3 1 2                      | No           |                                                                  |
| P <sub>24</sub> | 4 3 2 1                      | No           | Here, both 4 and 1 are breaking the property.                    |
|                 |                              |              |                                                                  |

So, for the above case, there are 14 2-transformed permutations.

## Input

The first line of input is an integer  $T(T \le 20)$  that indicates the number of test cases. Each case consists of a line containing two integers **n** and **K**.  $(1 \le n \le 10^9)$  and  $(0 \le K \le 3)$ .

## Output

For each case, output the case number first followed by the required result. Since the result could be huge, output result modulo 73405.

| Sample Input | Output for Sample Input |
|--------------|-------------------------|
| 3            | Case 1: 14              |
| 4 2          | Case 2: 1               |
| 100 0        | Case 3: 89              |
| 10 1         |                         |
|              |                         |

Problem Setter: Sohel Hafiz, Special Thanks: Mahbubul Hasan