\square		Input: Standard Input
Output: Standard Output		\quad (acm)

Check the following code which counts the number of swaps of bubble sort.

```
int findSwaps( int n, int a[] )
{
    int count = 0, i, j, temp, b[100000];
    for( i = 0; i < n; i++ ) {
        b[i] = a[i];
    }
    for( i = 0; i < n; i++ ) {
        for( j = 0; j < n - 1; j++ ) {
            if( b[j] > b[j+1] ) {
                    temp = b[j];
                    b[j] = b[j+1];
                    b[j+1] = temp;
            count++;
                }
        }
    }
    return count;
}
You have to find the average value of 'count' in the given code if we run findSwaps() infinitely many times using constant ' \(\mathbf{n}\) ' and each time some random integers (from \(\mathbf{1}\) to \(\mathbf{n}\) ) are given in array a[]. You can assume that the input integers in array \(\mathbf{a}[]\) are distinct.
```


Input

Input starts with an integer $\mathbf{T}(\leq \mathbf{1 0 0 0})$, denoting the number of test cases. Each test case contains an integer $\mathbf{n}\left(\mathbf{1} \leq \mathbf{n} \leq \mathbf{1 0}^{\mathbf{5}}\right)$ in a single line.

Output

For each case, print the case number and the desired result. If the result is an integer, print it. Otherwise print it in ' \mathbf{p} / \mathbf{q} ' form, where \mathbf{p} and \mathbf{q} are relative prime.

Sample Input

2	
1	
2	

Output for Sample Input
Case 1: 0
Case 2: 1/2

