

Find Solutions

Input: Standard Input **Output:** Standard Output

Look at the following equation:

$$c = ab - \frac{a+b}{2} + 1$$

Now given the value of c, how many possible values of and a and b are there (a and b must be integers)? That is you will have to find the number of pairs (a,b) which satisfies the above equation.

Input

The input file contains around 3000 line of input. Each line contains an integers n ($0 \le n \le 10^{14}$). This n actually denotes the value of c. A line containing a single zero terminates the input. This line should not be processed.

Output

For each line of input produce one line of output. This line contains two integers. First integer denotes the value of c and the second integer denotes the number of pair of values of a and b that satisfies the above equation, given the value of c.

Sample Input

1020	1020 8
400	400 2
0	

Comments:

The 8 solution pairs for the first sample input are (1, 2039), (2, 680), (5, 227), (14, 76), (76, 14), (227 5), (680, 2) and (2039, 1).

Problem Setter: Shahriar Manzoor, Special Thanks: Jane Alam Jan