

In a strange village, people have very long names. For example: $a a a a a, b b b$ and $a b a b a b a b$.
You see, it's very inconvenient to call a person, so people invented a good way: just call a prefix of the names. For example, if you want to call 'aaaaa', you can call ' $a a a^{\prime}$ ', because no other names start with 'aaa'. However, you can't call ' a ', because two people's names start with ' a '. The people in the village are smart enough to always call the shortest possible prefix. It is guaranteed that no name is a prefix of another name (as a result, no two names can be equal).

If someone in the village wants to call every person (including himself/herself) in the village exactly once, how many characters will he/she use?

Input

The first line contains $T(T<=10)$, the number of test cases. Each test case begins with a line of one integer $n(1<=n<=1000)$, the number of people in the village. Each of the following n lines contains a string consisting of lowercase letters, representing the name of a person. The sum of lengths of all the names in a test case does not exceed $1,000,000$.

Output

For each test case, print the total number of characters needed.

Sample Input Output for Sample Input

1	5
3	
aaaaa	
bbb	
abababab	

Problemsetter: Rujia Liu, Special Thanks: Yiming Li, Feng Chen, Jane Alam Jan

