	 Input: Standard Input Output: Standard Output	

There is a grid of $n * m$ unit squares, which has $n+1$ horizontal lines, $m+1$ vertical lines and $(n+1)(m+1)$ intersection vertices. You can choose three distinct non-collinear vertices to form a triangle. For example, if $n=m=1$, there are 4 vertices, which can form 4 triangles.

How many of these triangles have area between A and B (inclusive)?

Input

The first line contains the number of test cases $T(T<=25)$. Each test case contains four integer n, m, A, $B(1<=n, m<=200,0<=A<B<=n m)$.

Output

For each test case, print the number of triangles whose area is between A and B, inclusive.

Sample Input

Output for Sample Input

4				4	
1	1	0	1		6
1	2	1	2		27492
10	10	20	30	1737488	
12	34	56	78		

Problemsetter: Rujia Liu, Special Thanks: Feng Chen

