

Triangles in the Grid

Input: Standard Input Output: Standard Output

There is a grid of n^*m unit squares, which has n+1 horizontal lines, m+1 vertical lines and (n+1)(m+1) intersection vertices. You can choose three distinct **non-collinear** vertices to form a triangle. For example, if n=m=1, there are 4 vertices, which can form 4 triangles.

How many of these triangles have area between A and B (inclusive)?

Input

The first line contains the number of test cases T ($T \le 25$). Each test case contains four integer n, m, A, B ($1 \le n$, $m \le 200$, $0 \le A \le B \le nm$).

Output

For each test case, print the number of triangles whose area is between A and B, inclusive.

Sample Input	Output for Sample Input
4	4
1 1 0 1	б
1 2 1 2	27492
10 10 20 30	1737488
12 34 56 78	

Problemsetter: Rujia Liu, Special Thanks: Feng Chen