

There are n kinds (i.e. type-1, type-2, ..., type- n) of m satellites in the space. For each $1<=i<=n$, all the type- i satellites are working together to protect their minimal enclosing convex polyhedron (though its volume might be zero). If a point is protected by at least k kinds of satellites, we say this point is safe.

Find the volume of all safe places (it might be zero).

Input

The first line contains $T(T<=25)$, the number of test cases. Each test case begins with three integers n, k and $m(1<=k<=n<=5,4<=m<=50)$. Each of the following m lines contains an integer t and three real numbers x, y, z, representing a type- t satellite at $(x, y, z)(1<=t<=n, 0<=x, y, z<=10)$. Each test case is terminated by a blank line

Note: The coordinates of satellites in the judge input (not sample input) are randomly generated.

Output

For each test case, print the volume rounded to 5 decimal places after the decimal point.

Sample Input

2			
2	1	1	6
1	0	0	0
1	0	0	2
1	0	2	0
1	0	2	2
1	2	0	0
1	2	0	2
1	2	2	0
1	2	2	2
2	1	1	1
2	1	1	3
2	1	3	1
2	1	3	3
2	3	1	1
2	3	1	3
2	3	3	1
2	3	3	3
1	1	4	
1	0	0	0
1	0	1	0
1	0	0	1
1	1	0	0

Output for Sample Input

15.00000
0.16667

