

Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting them. They want to go from cave 1 to cave n. All the passages are difficult to pass. Passages are too small for two people to walk through simultaneously, and crossing a passage can make it even more difficult to pass for the next person. We define d_{i} as the difficulty of crossing passage i for the first time, and a_{i} as the additional difficulty for the second time (e.g. the second person's difficulty is $d_{i}+a_{i}$).

Your task is to find two (possibly identical) routes for Alice and Bob, so that their total difficulty is minimized.

For example, in figure 1, the best solution is $1->2->4$ for both Alice and Bob, but in figure 2, it's better to use 1->2->4 for Alice and 1->3->4 for Bob. It's always possible to reach cave \mathbf{n} from cave 1.

Input

There will be at most 200 test cases. Each case begins with two integers n, $m(1<=n<=500$, $1<=\mathrm{m}<=2000$), the number of caves and passages. Each of the following m lines contains four integers $\mathrm{u}, \mathrm{v}, \mathrm{d}_{\mathrm{i}}$ and $\mathrm{a}_{\mathrm{i}}\left(1<=\mathrm{u}, \mathrm{v}<=\mathrm{n}, 1<=\mathrm{d}_{\mathrm{i}}<=1000,0<=\mathrm{a}_{\mathrm{i}}<=1000\right)$. Note that there can be multiple passages connecting the same pair of caves, and even passages connecting a cave and itself.

Output

For each test case, print the case number and the minimal total difficulty.

Sample Input

4	4		
1	2	5	1
2	4	6	0
1	3	4	0
3	4	9	1
4	4		
1	2	5	10
2	4	6	10
1	3	4	10
3	4	9	10

Output for Sample Input
Case 1: 23
Case 2: 24

