

## **Double Shortest Paths**

Input: Standard Input Output: Standard Output



Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting them. They want to go from cave 1 to cave n. All the passages are difficult to pass. Passages are too small for two people to walk through simultaneously, and crossing a passage can make it even more difficult to pass for the next person. We define  $d_i$  as the difficulty of crossing passage i for the first time, and  $a_i$  as the additional difficulty for the second time (e.g. the second person's difficulty is  $d_i+a_i$ ).

Your task is to find two (possibly identical) routes for Alice and Bob, so that their total difficulty is minimized.



For example, in figure 1, the best solution is 1-2->4 for both Alice and Bob, but in figure 2, it's better to use 1->2->4 for Alice and 1->3->4 for Bob. It's always possible to reach cave n from cave 1.

## Input

There will be at most 200 test cases. Each case begins with two integers n, m (1<=n<=500, 1<=m<=2000), the number of caves and passages. Each of the following m lines contains four integers u, v, d<sub>i</sub> and a<sub>i</sub> (1<=u,v<=n, 1<=d<sub>i</sub><=1000, 0<=a<sub>i</sub><=1000). Note that there can be multiple passages connecting the same pair of caves, and even passages connecting a cave and itself.

## Output

For each test case, print the case number and the minimal total difficulty.

| Sample Input | Output for Sample Input |
|--------------|-------------------------|
| 4 4          | Case 1: 23              |
| 1 2 5 1      | Case 2: 24              |
| 2 4 6 0      |                         |
| 1 3 4 0      |                         |
| 3 4 9 1      |                         |
| 4 4          |                         |
| 1 2 5 10     |                         |
| 2 4 6 10     |                         |
| 1 3 4 10     |                         |
| 3 4 9 10     |                         |

Problemsetter: Rujia Liu, Special Thanks: Md. Mahbubul Hasan, Feng Chen