

In chess, King is the most important piece. It can move left, right, up, down or diagonally, but only one square at a time, shown below.

Given two squares $\mathrm{A}(\mathrm{r} 1, \mathrm{c} 1), \mathrm{B}(\mathrm{r} 2, \mathrm{c} 2)$, your task is to calculate the number of moves needed to move a king from A to B . To make the problem (slightly) harder, one square $\mathrm{C}(\mathrm{r} 3, \mathrm{c} 3)$ is removed from the chessboard, that means the king should never go into square C during his trip. In this problem, rows are numbered $1 \sim 8$ from bottom to top, and columns are numbered $1 \sim 8$ from left to right.

Input

There will be at most 10000 test cases. Each case contains 6 integers r1, c1, r2, c2, r3, c3 ($1<=\mathrm{rl}$, c1, r 2 , $\mathrm{c} 2, \mathrm{r} 3, \mathrm{c} 3<=8$). Three squares A, B, C are always distinct.

Output

For each test case, print the case number and the minimum number of moves needed.

Problemsetter: Rujia Liu, Special Thanks: Md. Mahbubul Hasan, Feng Chen

