uva Dnline Judge

369 Combinations

Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following:

GIVEN:

$$
5 \leq N \leq 100, \quad \text { and } \quad 5 \leq M \leq 100, \quad \text { and } \quad M \leq N
$$

Compute the EXACT value of:

$$
C=\frac{N!}{(N-M)!\times M!}
$$

You may assume that the final value of C will fit in a 32 -bit Pascal LongInt or a C long.
For the record, the exact value of 100 ! is:

$$
\begin{aligned}
& 93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, \\
& \quad 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, \\
& 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000
\end{aligned}
$$

Input

The input to this program will be one or more lines each containing zero or more leading spaces, a value for N, one or more spaces, and a value for M. The last line of the input file will contain a dummy N, M pair with both values equal to zero. Your program should terminate when this line is read.

Output

The output from this program should be in the form:
N things taken M at a time is C exactly.

Sample Input

1006
$20 \quad 5$
186
00

Sample Output

```
100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.
```

