Problem B
 Magic Squares

Source file name: msquares.c, msquares.cpp or msquares.java
According to Wikipedia, "a magic square of order n is an arrangement of n^{2} numbers, usually distinct integers, in a square, such that the n numbers in all rows, all columns, and both diagonals sum to the same constant". This constant is the module of the magic square. There are well-known magic squares such as the order 3 chinese Lo Shu magic square:

4	9	2
3	5	7
8	1	6

It is allowed to use any collection of n^{2} integer numbers to build a magic square of order n. The Passion façade of the Sagrada Família church in Barcelona, designed by Josep Subirachs, displays the magic square of order 4 and module 33 shown in the following figure. Note that, in this example, the given numbers are not the first n^{2} integers and that there are repetitions.

1	14	14	4
11	7	6	9
8	10	10	5
13	2	3	15

Armadora de Cuadrados Magicos (ACM) is a recently founded enterprise that is interested on applications of magic squares to cryptography. For that reason, they want to develop software to help magic square builders in detecting if a given sequence of integer numbers may be arranged in a magic square. Your task is to help ACM in this task.

Input

The input consists of several test cases, each one defined by a line containing a sequence of m blank-separated integers $x_{1}, x_{2}, \ldots, x_{m}\left(1 \leq m \leq 16,-10^{3} \leq x_{i} \leq 10^{3}\right.$ for each $\left.1 \leq i \leq m\right)$.
The input must be read from standard input.

Output

For each test case, output a line with exactly one letter: ' Y ' to indicate that a magic square may be built with the numbers provided for the case, or ' N ' otherwise.
The output must be written to standard output.

Sample input	Output for the sample input
123456789	Y
11441411769813102103515	Y
4444444444444448	N
1234	N
1 $11-1-1$	N
1111	Y
-1	Y
111	N

