Problem J The "Win-stay and Lose-shift" Strategy

Source file name: wsls.c, wsls.cpp or wsls.java

In recent weeks, geek tabloids have hit the newsstands around the world with a truly remarkable breakthrough in science: a group of researchers from Chinese universities have written a paper about the role of psychology in winning (or losing) at rock-paper-scissors (RPS). After studying how players change or keep their strategies during multiple-round sessions, the scientists figured out a basic rule that people tend to play by that could potentially be exploited. This rule is called the win-stay and lose-shift strategy.

An RPS session is a finite sequence of rounds played between two opponents. In each round, players simultaneously form one of three shapes with an outstretched hand: rock (R), paper (P), and scissors (S). Rock beats scissors, scissors beat paper, and paper beats rock; if both players throw the same shape, the round is tied. The outcome of a round for a player is 1 point if he/she wins, -1 point if he/she loses, and 0 points if it is a tie. The outcome of a session for a player is the sum over the outcome points of his/her rounds. For example, assume that a and b are playing a session of three rounds. In the first round a plays scissors and b plays paper; in the second round a plays paper and b plays paper; and, in the last round a plays rock and b plays rock. Then, the outcome of the first round for a is 1 point (for b is -1 point), and the outcomes of the second and third rounds for a is 0 points (for b is also 0 points). Consequently, the outcome of this session for a is 1 point and for b is -1 point.

During an RPS session, the win-stay and lose-shift strategy for a player p is as follows:

- \bullet If it is the first round or if it was a tie in the previous round, for the current round p makes a guess.
- If p lost in the previous round, for the current round p switches to the thing that beats p's opponent previous choice.
- If p won in the previous round, for the current round p switches to the thing that beats p's previous choice.

For example, assume that a and b are playing a session of three rounds, and a is playing under the win-stay and lose-shift strategy and that b plays as above. Initially a guesses \mathbb{R} and loses (P beats \mathbb{R}). In the second round a switches to \mathbb{S} because it beats b's previous winning choice (i.e., P) and wins (\mathbb{S} beats P). In the third round a switches to \mathbb{R} because it beats a's previous choice (i.e., \mathbb{S}) and ties (b also plays \mathbb{R}). In this session the outcome for a is 0 points. However, this is not the only possible outcome for a under the win-stay and lose-shift strategy.

Given a session of n rounds for players a and b, and the probabilities of a guessing R, P, and S during the session, you are asked to write a program that decides if a's expected session outcome when playing under the win-stay and lose-shift strategy against b is better than a's actual session outcome.

Input

The first line of the input contains a non-negative integer number N ($N \ge 0$) indicating the number of test cases. Then N test cases follow, each consisting of three lines of input. The first and second lines of a test case contain, respectively, strings a and b only containing characters R, P, and S ($1 \le |a| \le 10^4$, $1 \le |b| \le 10^4$, with |a| = |b|) defining an RPS session of |a| rounds played between players a and b. The third line of a test case contains three blank-separated integer numbers p_R , p_P , and p_S ($0 \le p_R \le 100$, $0 \le p_P \le 100$, $0 \le p_S \le 100$, with $p_R + p_P + p_S = 100$) indicating, respectively, the probability (amplified by 100) of a guessing rock, scissors, and paper.

The input must be read from standard input.

Output

For each test case output a single line containing three blank-separated quantities of the form

хуг

where

- x is an integer indicating a's actual session outcome against b,
- y is a floating point number indicating a's expected session outcome when playing against b with probabilities p_R , p_P , and p_S under the win-stay and lose-shift strategy (rounded up to exactly 4 decimal places, with no leading zeroes but at least one digit before the decimal point), and
- z is the character Y if y is strictly greater than x, and N, otherwise.

The output must be written to standard output.

Sample input	Output for the sample input
4 SPR PPR 5 80 15 RRR PPR 5 80 15 S S S 33 34 33 S S S 34 33 33	1 0.3060 N -2 0.3060 Y 0 -0.0100 N 0 0.0100 Y