Fermat's little theorem states that if \boldsymbol{p} is a prime number, then for any integer \boldsymbol{a}, the number $\left(\boldsymbol{a}^{\boldsymbol{p}}-\boldsymbol{a}\right)$ is an integer multiple of \boldsymbol{p}. In the notation of modular arithmetic, this is expressed as

$$
a^{p} \equiv a \quad(\bmod p) .
$$

For example, if $a=2$ and $p=7,2^{7}=128$, and $128-2=7 \times 18$ is an integer multiple of 7 . We can also write $128 \% 7=2$, here $\%$ is the modulo operator used in C/C++ or Java.

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that $a^{p-1}-1$ is an integer multiple of p, or in symbols

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

For example, if $a=2$ and $p=7$ then $2^{6}=64$ and $64-1=63$ is a multiple of 7. We can also write $64 \% 7=1$.

You are given a set S which contains 1 to N. You want to find two subsets of S, X and Y such that the following conditions are met:

1. $\mathrm{X} \cap \mathrm{Y}=\varnothing$
2. Let bitwise XOR of every element of X equals U and Y equals V . U must be less than or equal to V .

You want to find out number of ways you can choose such subset X and Y . Two ways (X1, Y1) and (X2, Y2) will be equal if X1 equals X2 and Y1 equals Y2 or X1 equals Y2 and Y1 equals X2.

For example is $S=\{1,2\}$, the ways are:

1. $\mathrm{X}=\varnothing, \mathrm{Y}=\varnothing \cdot[\mathrm{U}=0, \mathrm{~V}=0]$
2. $\mathrm{X}=\varnothing, \mathrm{Y}=\{1\} .[\mathrm{U}=0, \mathrm{~V}=1]$
3. $\mathrm{X}=\varnothing, \mathrm{Y}=\{1,2\}$. $[\mathrm{U}=0, \mathrm{~V}=1 \wedge 2=3$, (^ means bitwise XOR in C/C++/Java)]
4. $\mathrm{X}=\varnothing, \mathrm{Y}=\{2\}$. $[\mathrm{U}=0, \mathrm{~V}=2]$
5. $\mathrm{X}=\{1\}, \mathrm{Y}=\{2\} .[\mathrm{U}=1, \mathrm{~V}=2]$

Now, given \mathbf{N}, you need to find the number of ways you can choose two subsets of \mathbf{S} such that the 2 conditions meet, modulo $\mathbf{1 0 0 0 0 0 0 0 0 7} \mathbf{(1 0}{ }^{9}+$ 7).

Input

First line contains $\mathbf{T}(\mathbf{T}<=\mathbf{1 0 0})$, the number of test cases. Each of the next \mathbf{T} lines each contains an integer $\mathbf{N}\left(\mathbf{0}<=\mathbf{N}<\mathbf{1 0}^{\mathbf{1 0 0 0 0}}\right)$.

Output

For each case print one line, "Case \mathbf{C} : \mathbf{W} ", where \mathbf{C} is the case number, and \mathbf{W} is the required answer for that case.

Sample Input	Output for Sample Input
2	Case $1: 5$
2	Case 2:14

Problem Setter: Hasnain Heickal
Special Thanks: Md. Shiplu Hawlader, Muhammad Ridowan

