Nowadays emoticon has become an art. People are no longer limited to simple ones like :-), :-(, :-P etc. They use >:O, ~_~, =^_^= and so on. Recently I came across ^^^ and it looks kind of cute to me. Given a string S consisting of only _'s and ${ }^{-}$'s, I was wondering what is the maximum number of disjoint subsequences of "^_^" (quote for beauty) in the string S.
For example, if $\mathrm{S}=$ "^^_^^^" then the answer is 2 . However, for $\mathrm{S}=$ "_^^" the answer is 0 .

Input

Input starts with a positive integer $\mathbf{T}(<=\mathbf{5 , 0 0 0})$, denoting the number of test cases. Hence follows \mathbf{T} test cases. Each case consists of a single string made of only ${ }^{\wedge}$ and _. The length of the strings would be at most $\mathbf{1 0 0 , 0 0 0}$ and the sum of lengths of the strings will be $\mathbf{2 , 1 0 0 , 0 0 0}$ at most.

Output

For each test case, print the case number followed by the answer.

Sample Input

Output for Sample Input

Case 1: 1
Case 2: 1
Case 3: 0
Case 4: 2
Case 5: 2

Hint:

- $\mathrm{S}[1 \ldots \mathrm{n}]$ means S is a string of length n and it is 1 -indexed.
- S_{i} means i'th character of S.
- A string $\mathrm{S}[1 \ldots \mathrm{n}]$ is a subsequence of another string $\mathrm{T}[1 \ldots \mathrm{~m}]$, if we can find: $\left(t_{1}, t_{2}, \ldots t_{n}\right)$ such that, $S[i]=T\left[t_{i}\right]$ for $1<=i<=n$ and $1<=t_{1}<t_{2}<\ldots<t_{n}$ $<=\mathrm{m}$. For example, "abc" is a subsequence of "aabbcc" but not of "bca".
- Two subsequences are disjoint if same character (position matters) is not used in both of the subsequences. For example, let S = "abca". "ab" and "ca" are two disjoint subsequences of S. However, if S = "abc" then "ab" and "ac" are not disjoint subsequences. In both of these examples the subsequences are unique. However, for $S=$ "aabb" let's form two subsequences $\mathrm{S}_{1} \mathrm{~S}_{3}$ and $\mathrm{S}_{2} \mathrm{~S}_{4}$ (both are "ab"), both of these are disjoint. But if we have chosen $S_{1} S_{3}$ and $S_{1} S_{4}$ then they would not be disjoint.

Problem Setter: Md. Mahbubul Hasan
Special Thanks: Zobayer Hasan

