Jumping Frogs II

Input: Standard Input **Output:** Standard Output

At time 0, F frogs are sitting on a straight line. All the positions of the frogs are non-negative integer numbers. Every second, all the frogs jump. Each of the frogs has its own velocity, i.e., every second the i^{th} frog jumps V_i units. Every frog jumps to its right.

The line is divided into N + 1 contiguous segment. The left end of the first segment is always 0 and the right end of the $(N+1)^{th}$ segment is 10^9 . The segments are denoted by a sequence of N positive integers, the right end point of first N segments. Every segment except the first one starts from the first point after the right endpoint of the last segment.

For example, if N = 1 and the sequence has 1 integer number 10, then there are two segments, one is from 0 to 10 and another is from 11 to 10^9 , both inclusive.

You are given the initial positions of all the \mathbf{F} frogs and a sequence of positive integers describing the segments. Find the minimum time it will take all the frogs to reach a single segment. A frog is said to be on a segment if and only if it's sitting on some points inside the segment (including the endpoints). Please note that a frog is not said to be inside a segment when it's jumping.

Input

Input starts with a single positive integer, $1 \le T \le 10$, on a single line, denoting the number of test cases. Each of the following T test cases has the following 5 lines,

1. Blank line. To separate cases.

2. Two non-negative positive integers $1 \le F \le 1000$, $1 \le N \le 100,000$.

3. F non negative integers, where the $i^{\rm th}$ integer represents the position of the $i^{\rm th}$ frog.

4. F non negative integers, where the i^{th} integer represents the velocity of the i^{th} frog.

5. A sequence of \tilde{N} positive integers describing the segments.

Note that, all the numbers in the input are greater than 0 and less than 10^9 where a limit is not specified.

Output

For each case, print the minimum time it takes all the frogs to reach a single segment. If it's impossible for all the frogs to be on a single segment, print **-1**. For every case print the output on a single line.

Sample Input	Output for Sample Input
2	Case 1: 0
	Case 2: 1
1 1	
10	
10000	
100000	
2 1	
1 200	
199 100	
100	

Problem Setter: Muhammed Hedayetul Islam Special Thanks: Hasnain Heickal