

At time 0, F frogs are sitting on a straight line. All the positions of the frogs are non-negative integer numbers. Every second, all the frogs jump. Each of the frogs has its own velocity, i.e., every second the $\mathbf{i}^{\text {th }}$ frog jumps $\mathbf{V}_{\mathbf{i}}$ units. Every frog jumps to its right.
The line is divided into $\mathbf{N}+\mathbf{1}$ contiguous segment. The left end of the first segment is always 0 and the right end of the $\mathbf{(N + 1)}{ }^{\text {th }}$ segment is $\mathbf{1 0}^{\mathbf{9}}$. The segments are denoted by a sequence of \mathbf{N} positive integers, the right end point of first \mathbf{N} segments. Every segment except the first one starts from the first point after the right endpoint of the last segment.

For example, if $\mathrm{N}=1$ and the sequence has 1 integer number 10, then there are two segments, one is from 0 to 10 and another is from 11 to 10^{9}, both inclusive.

You are given the initial positions of all the \mathbf{F} frogs and a sequence of positive integers describing the segments. Find the minimum time it will take all the frogs to reach a single segment. A frog is said to be on a segment if and only if it's sitting on some points inside the segment (including the endpoints). Please note that a frog is not said to be inside a segment when it's jumping.

Input

Input starts with a single positive integer, $\mathbf{1}<=\mathbf{T}<=\mathbf{1 0}$, on a single line, denoting the number of test cases. Each of the following T test cases has the following 5 lines,

1. Blank line. To separate cases.
2. Two non-negative positive integers $\mathbf{1}<=\mathbf{F}<=\mathbf{1 0 0 0}, \mathbf{1}<=\mathbf{N}$ $<=100,000$.
3. F non negative integers, where the $\mathbf{i}^{\text {th }}$ integer represents the position of the $\mathbf{i}^{\text {th }}$ frog.
4. F non negative integers, where the $\mathbf{i}^{\text {th }}$ integer represents the velocity of the $\mathbf{i}^{\text {th }}$ frog.
5. A sequence of \mathbf{N} positive integers describing the segments.

Note that, all the numbers in the input are greater than $\mathbf{0}$ and less than $\mathbf{1 0}^{\mathbf{9}}$ where a limit is not specified.

Output

For each case, print the minimum time it takes all the frogs to reach a single segment. If it's impossible for all the frogs to be on a single segment, print -1. For every case print the output on a single line.

Sample Input	Output for Sample Input
2	$\begin{array}{\|l} \hline \text { Case 1: } 0 \\ \text { Case 2: } 1 \end{array}$
11	
10	
10000	
1000000	
21	
1200	
199100	
100	

Problem Setter: Muhammed Hedayetul Islam Special Thanks: Hasnain Heickal

