Problem G: Sparse Domino Tiling Time Limit: 5 seconds

Description

A domino is a $\mathbf{1 x} \mathbf{2}$ or $\mathbf{2 x} \mathbf{1}$ Tile. Determine in how many ways exactly \mathbf{N}^{2} dominoes can be placed without overlapping on an ($\mathbf{2 M}$) $\mathbf{x}(\mathbf{2 N})$ chessboard, such that every $\mathbf{2 x} \mathbf{2}$ square contains at least two uncovered unit squares which lie in the same row or column. One possible tiling is shown below:

Input

A number of inputs ($\leq \mathbf{1 0 0 0}$), with space separated integers $\mathbf{N}, \mathbf{M}(1 \leq \mathbf{M}, \mathbf{N} \leq \mathbf{1 0 0 0 0 0 0})$, each on one line.

Output

Output one line per input, the answer modulo 10000000007.

Sample Input

11
22

Sample Output

4
36

