Problem I: Disk Madness

Time Limit: 3 seconds

Description

Consider \mathbf{N} disks in the plane: $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathbf{N}}$ such that, for all \mathbf{i}, where $0<\mathbf{i}<\mathbf{N}$, we have the center of $\mathbf{C}_{\mathbf{i}}$ on the circumference of $\mathbf{C}_{\mathbf{i}+1}$, and the center of $\mathbf{C}_{\mathbf{n}}$ on the circumference of $\mathbf{C}_{\mathbf{1}}$. What is the maximum number of pairs of disks $\left(\mathbf{C}_{\mathbf{i}}, \mathbf{C}_{\mathbf{j}}\right)$, with $1 \leq \mathbf{i}, \mathbf{j} \leq \mathbf{N}$ such that $\mathbf{C}_{\mathbf{i}}$ properly contains $\mathbf{C}_{\mathbf{j}}$. Note, the set \mathbf{T} properly contains, the set \mathbf{S}, If and only if $\mathbf{S} \subseteq \mathbf{T}$ and $\mathbf{S} \neq \mathbf{T}$.

Input

A number of inputs ($<\mathbf{1 0 0 0}$) with integer $\mathbf{N}(1 \leq \mathbf{N} \leq \mathbf{1 0 0 0 0 0 0})$.

Output

Output one line per input, the answer.

Sample Input

1
2
3

Sample Output

0
0
1

