Problem H: Hobbit's Resistor Graphs Time Limit: 5 seconds # **Description** Series: $$- \frac{R_1}{\sqrt{N}} - \frac{R_2}{\sqrt{N}} - \frac{R_3}{\sqrt{N}} = - \frac{R_{eq} = R_1 + R_2 + R_3}{\sqrt{N}}$$ Parallel: $- \frac{R_1}{\sqrt{N}} - \frac{R_2}{\sqrt{N}} = - \frac{R_{eq} = (1/R_1 + 1/R_2 + 1/R_3)^{-1}}{\sqrt{N}}$ Hobbit has only learnt the parallel and series method of calculating resistance across an electric network graph where there is a single resister on every edge of the undirected graph \mathbf{G} . Given an undirected graph \mathbf{G} , and 2 vertices \mathbf{u} and \mathbf{v} , if it is possible to calculate the resistance between \mathbf{u} and \mathbf{v} using only these 2 rules shown above, then the graph \mathbf{G} is called series-parallel decomposible (sp-decomposible for short) with resect to (\mathbf{u}, \mathbf{v}) . In other words, \mathbf{G} may be turned into just the 2 node graph of \mathbf{u} , \mathbf{v} connected by one edge, by a sequence of the following operations: (a) Replacement of a pair of parallel edges with a single edge that connects their common endpoints; (b) Replacement of a pair of edges incident to a vertex of degree 2 other than \mathbf{u} or \mathbf{v} with a single edge. # Input The input contains multiple sets of data. The first line of each set contains 2 positive integers \mathbf{n} ($1 \le \mathbf{n} \le 100000$), and \mathbf{m} ($1 \le \mathbf{m} \le 100000$), which represent the number of nodes and the number of edges/resistors in the resistor network. Then, a total of m lines follows with each resister edge (\mathbf{u} , \mathbf{v}), such that ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$, $\mathbf{u} \ne \mathbf{v}$). # Output For each set of data, output on one line the number of unique pairs (u, v) with u < v, such that G is sp-decomposible with respect to (u, v). #### Sample Input - 66 - 12 - 13 - 14 - 23 - 2 4 - 56 # **Sample Output** 6