Problem D: Do Pillars Again
 Time Limit: 5 seconds

Description

Assuming that there are \mathbf{N} pillars, and we need to put onto the pillars, a bunch of balls, i.e., numbered $1,2,3,4,5, \ldots$, in increasing order such that on the same pillar, the sum of the numbers of any 2 adjacent balls is a cube (\mathbf{k}^{3} for positive integer \mathbf{k}). Calculate the maximum number of balls that can be placed on the \mathbf{N} pillars. You may put the ball on any pillar, but no balls can be skipped. The process stops once you cannot not place a ball.

Input

A number of of inputs ($\leq \mathbf{1 0 0 0}$), each with $\mathbf{N}(0<\mathbf{N} \leq 2000000)$.

Output

For each input, output the total number of balls on one line.

Sample Input

1
2
8

Sample Output

1
2
15

