Problem E: Easy Permutation Problem Time Limit: 5 seconds

Description

Define an alternating permutation of the set $\{1,2,3, \ldots, \mathbf{n}\}$ to be an arrangement of those numbers such that the permutation $\mathbf{a}_{\mathbf{1}} \ldots \mathbf{a}_{\mathbf{n}}$ satisfies $\left(\mathbf{a}_{\mathbf{i}-\mathbf{1}}<\mathbf{a}_{\mathbf{i}}\right.$ AND $\left.\mathbf{a}_{\mathbf{i}}>\mathbf{a}_{\mathbf{i}+\mathbf{1}}\right)$ or $\left(\mathbf{a}_{\mathbf{i}-\mathbf{1}}>\mathbf{a}_{\mathbf{i}}\right.$ AND $\left.\mathbf{a}_{\mathbf{i}}<\mathbf{a}_{\mathbf{i}+\mathbf{1}}\right)$ for all $1<\mathbf{i}<\mathbf{n}$. In this problem, compute the number of alternating permutations for a given triple of ($\mathbf{n}, \mathbf{a}_{1}, \mathbf{a}_{\mathbf{n}}$).

Input

A number of of inputs ($\leq \mathbf{1 5 0 0}$), each line with $\mathbf{n}, \mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{n}}\left(2 \leq \mathbf{n} \leq 2000,1 \leq \mathbf{a}_{1}, \mathbf{a}_{\mathbf{n}} \leq \mathbf{n}\right)$.

Output

For each input, output the total number of permutations modulo $\mathbf{1 0 0 0 0 0 0 0 0 7}$ on one line.

Sample Input

212
423

Sample Output

1
2

