Problem G: Graph Cut of Maximum XOR Weight Time Limit: 5 seconds

Description

A cut is a partition of the vertices of a graph into two disjoint subsets. Any cut creates a cut-set, the set of edges that have one endpoint in each subset of the partition. Let $\mathbf{V}(\text{cut-set})$ denote the XOR of all the weights on all the edges in the cut-set. In this problem you will start with an empty graph with \mathbf{n} nodes. A number of weighted edges will be successively added to the graph. After the addition of each weighted edge, output the value of the maximum XOR cut, such that $\mathbf{V}(\text{cut-set})$ is maximized!

Input

A number of of inputs (\leq **100**) with the following format.

The first two integers \mathbf{n} , \mathbf{m} represent the number of points in the graph and the total number of edges to be added successively. Next, we have \mathbf{m} lines, with \mathbf{x} , \mathbf{y} , \mathbf{w} where (\mathbf{x}, \mathbf{y}) is the undirected the edge of weight \mathbf{w} . \mathbf{w} will be given in binary form listed from the highest binary bit to lowest binary bit. Note that $1 \le \mathbf{n} \le 500$, $1 \le \mathbf{m} \le 1000$, $0 \le \text{length}(\mathbf{w}) \le 1000$, $1 \le \mathbf{x}$, $\mathbf{y} \le \mathbf{n}$.

Output

For each edge, output the value of the maximum XOR cut in binary form (from high bit to low bit).

Sample Input

36

1 2 11

1 2 11

3 3 1110

1 3 1011011

1 2 10111

2 3 1110110

Sample Output

11

0

1011011

1011011

1100001