Problem L: Looking at Divisors
 Time Limit: 5 seconds

Description

Let $\mathbf{d}(\mathbf{n})$ be the sum of all divisors of n. For example $\mathbf{d}(6)=1+2+3+6=12$. Given integers \mathbf{n} and \mathbf{k}, compute the sum of all integers \mathbf{m} for $1 \leq \mathbf{m}<\mathbf{n}$, such that $\mathbf{d}(\mathbf{m})$ is a multiple of \mathbf{k}, i.e. $\mathbf{d}(\mathbf{m})=\mathbf{l}^{*} \mathbf{k}$, where \mathbf{l} is a positive integer.

Input

A number of of inputs $(\mathbf{1 0 0})$, each start with the number of value of integers $\mathbf{n}, \mathbf{k}(1 \leq \mathbf{n}, \mathbf{k} \leq 10000000)$.

Output

Output the answer modulo 1000000007.

Sample Input

105
205

Sample Output

8
27

