Problem E
 acm
 Leap Birthdays

Input: Standard Input Output: Standard Output

Do you know anyone, whose birthday is on $29^{\text {th }}$ February? I don't. But I was thinking about such a person and it made me sad. A person like that would be so unlucky, don't you think? Unlike others, they will have a birthday every four years. And sometimes, not even in four years. Because we know $29^{\text {th }}$ February only occurs in leap years. And a year will be a leap year if and only if the following function returns true.

```
bool isLeapYear(int year)
{
    if(year % 400 == 0) return true;
    else if(year % 100 == 0) return false;
    else if(year % 4 == 0) return true;
    else return false;
}
```

The above function means, a year that is divisible by 4 and not divisible by 100 are leap years but with the exception that years that are divisible by 400 are also leap years (although that is also divisible by 100).

But it's just so unfair. Take for instance a person who is born on $29^{\text {th }}$ February, 1888. He will have another birthday on 29 ${ }^{\text {th }}$ February, 1892. Then in 1896. And then in 1900 he won't have one. Because it's a year which is not divisible by 400 but is divisible by 100 . What a pity! He will have to wait 8 years for his next birthday in 1904.

So if you are given the birthday of a person and a query year QY, you can't easily say how many birthdays he had till $31^{\text {st }}$ December of the year QY. There are complex mathematics involved. And it can make you very sad. So these are very dangerous problems for a human to solve. Honestly speaking, I myself got a bit sad and depressed while writing this problem thinking about those very unfortunate persons. I don't want to think of them anymore, so please solve the problem for me. Given a year QY, I was wondering how many birthdays a person has celebrated by the end of the year QY. You will also be given the person's birthday.

For example, given a person whose birthday is on $29^{\text {th }}$ February, 1888, how many birthdays does he celebrate if QY = 1910? The answer is 4 (1892, 1896, 1904 and 1908). Similarly a person having birthday on $31^{\text {stt }}$ December, 1987 celebrated $\mathbf{3}$ birthdays if $\mathbf{Q Y}=1990$. Note, a person just being born, can't celebrate his birthday. That's why we didn't count the birth year as a birthday.

Dhaka Regional

Input

First line will contain an integer, $\mathbf{T}(\mathbf{T} \leq 100)$, the number of test cases. Each case will contain four integers per line: $\mathbf{D}, \mathbf{M} \mathbf{(1 \leq M \leq 1 2) , ~} \mathbf{Y}(\mathbf{1 8 5 0} \leq \mathrm{Y} \leq 2016)$ and $\mathbf{Q Y}(\mathrm{Y} \leq \mathbf{Q Y} \leq \mathbf{3 0 0 0})$. Together, D, M and \mathbf{Y} will form a person's birthday where \mathbf{D} denotes day (\mathbf{D} will always be a valid day based on \mathbf{M} and \mathbf{Y}), \mathbf{M} denotes month and \mathbf{Y} denotes year. You can assume, that it will always be a valid date. QY (as described above), means the year upto which you need to calculate (inclusive).

Output

Output one line per case: "Case \mathbf{C} : \mathbf{X} ", where \mathbf{C} is the case number and \mathbf{X} is the answer. See the sample for clarification.

Sample Input

4

29218881910
29219882010
1119882010
311219882010

Output for Sample Input

Case 1: 4

Case 2: 5
Case 3: 22
Case 4: 22

