

Problem G Input: Standard Input
Output: Standard Output

 XOR Path

You are given an unrooted weighted tree. The weights on the edges are 16
bit unsigned integers, that is they are between 0 to 216-1 (inclusive). For
every integer x in the range 0 to 216-1 (inclusive) find out how many pairs
(unordered) of distinct nodes in the given tree have distance x. Distance
between two nodes in the tree is defined as the bitwise xor of the edge
weights on the path between these two nodes.

For example consider the tree on the right:

There are four nodes A, B, C and D in this tree. The edge weights are: AB (5), AC (2) and AD (1). So
the distance between A and D is 1, B and C is 7, B and D is 4 etc.

Input
First line of the input contains a positive integer T (T ≤ 10) denoting the number of test cases. Hence
T cases follow. Each case starts with a positive integer n (n ≤ 100000) denoting the number of nodes
in the tree. Hence n - 1 lines follow with the format “u v w” meaning there is an edge between u and
v (1 ≤ u, v ≤ n) with the weight w.

Output
For each test case output the case number (no trailing space after Case x:) followed by the number
of paths with the distance x for every x in the range 0 to 216-1 (inclusive). There should NOT be empty
line(s) between two cases. Please see the sample input output for the details.

Sample Input Output for Sample Input
1

4

1 2 5
1 3 2
1 4 1

Case 1:
0

1

1

1

1

1

0

1

0

… (216 - 9, 0s follow)

Please note, the output above is truncated intentionally to save the
trees, electricity, ram consumption, network bandwidth and so on.

11

