A bar-code symbol consists of alternating dark and light bars, starting with a dark bar on the left. Each bar is a number of units wide. Figure 1 shows a bar-code symbol consisting of 4 bars that extend over 1 + 2 + 3 + 1 = 7 units.

In general, the bar code BC(n, k, m) is the set of all symbols with k bars that together extend over exactly n units, each bar being at most m units wide. For instance, the symbol in Figure 1 belongs to BC(7,4,3) but not to BC(7,4,2). Figure 2 shows all 16 symbols in BC(7,4,3). Each '1' represents a dark unit, each '0' a light unit.

0:	1000100 4:	1001110 8	: 1100100 12:	1101110
1:	1000110 5:	1011000 9	: 1100110 13:	1110010
2:	1001000 6:	1011100 10	: 1101000 14:	1110100
3:	1001100 7:	1100010 11	: 1101100 15:	1110110

Figure 2: All symbols of BC(7,4,3)

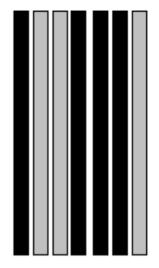


Figure 1: Bar-code over 7 units with 4 bars

Input

Each input will contain three positive integers n, k, and $m (1 \le n, k, m \le 50)$.

Output

For each input print the total number of symbols in BC(n, k, m). Output will fit in 64-bit signed integer.

Sample Input

7 4 3 7 4 2

Sample Output

16 4