A bar-code symbol consists of alternating dark and light bars, starting with a dark bar on the left. Each bar is a number of units wide. Figure 1 shows a bar-code symbol consisting of 4 bars that extend over $1+2+3+1=7$ units.

In general, the bar code $\mathrm{BC}(n, k, m)$ is the set of all symbols with k bars that together extend over exactly n units, each bar being at most m units wide. For instance, the symbol in Figure 1 belongs to $\mathrm{BC}(7,4,3)$ but not to $\mathrm{BC}(7,4,2)$. Figure 2 shows all 16 symbols in $\mathrm{BC}(7,4,3)$. Each ' 1 ' represents a dark unit, each ' 0 ' a light unit.

0 :	1000100	4:	1001110	8:	1100100	12:	1101110
1:	1000110	$5:$	1011000	9:	1100110	13:	1110010
2 :	1001000	6:	1011100	10:	1101000	14:	1110100
3 :	1001100	7 :	1100010	11:	1101100	15:	1110110

Figure 2: All symbols of $\mathrm{BC}(7,4,3)$

Input

Figure 1: Bar-code over 7 units with 4 bars

Each input will contain three positive integers n, k, and $m(1 \leq n, k, m \leq 50)$.

Output

For each input print the total number of symbols in $\mathrm{BC}(n, k, m)$. Output will fit in 64 -bit signed integer.

Sample Input

743
742

Sample Output

