This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of $4n + 1$ numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: $1, 5, 9, 13, 17, 21, \ldots$ are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: $1 \times h$. The rest of the numbers are H-composite.

For examples, the first few H-composites are: $5 \times 5 = 25$, $5 \times 9 = 45$, $5 \times 13 = 65$, $9 \times 9 = 81$, $5 \times 17 = 85$.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. $125 = 5 \times 5 \times 5$ is not an H-semi-prime, because it’s the product of three H-primes.

Input

Each line of input contains an H-number $\leq 1,000,001$. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

```
21  
85  
789  
0  
```

Sample Output

```
21 0  
85 5  
789 62  
```