11315 Attacker

There are k attackers in an $n * m$ chessboard.
The i-th attacker is located in (X_{i}, Y_{i}), with a attacking range of R_{i}.
A square (X, Y) is attacked by the i-th attacker if and only if $\left|X-X_{i}\right|+\left|Y-Y_{i}\right| \leq R_{i}$.
Count the number of squares on the chessboard attacked by at least one attacker.

Input

There are several input cases. The first line contains three integers n, $m, k(1 \leq n, m \leq 100000000,1 \leq$ $k \leq 20000)$. In the following k lines, each line contains three integers $X_{i}, Y_{i}, R_{i}\left(1 \leq X_{i} \leq n\right.$, $1 \leq Y_{i} \leq m, 1 \leq R_{i} \leq 1000000$), the position and attack range of each attacker.

The last case is followed by a single zero, which should not be processed.

Output

For each case, print the case number and the answer.

Sample Input

443
111
$\begin{array}{lll}3 & 1\end{array}$
331
1101
111
0

Sample Output

Case 1: 10
Case 2: 2

