For a positive integer n, let $f(n)$ denote the sum of the digits of n when represented in base 10. It is easy to see that the sequence of numbers $n, f(n), f(f(n)), f(f(f(n))), \ldots$ eventually becomes a single digit number that repeats forever. Let this single digit be denoted $g(n)$.

For example, consider $n=1234567892$. Then:

$$
\begin{aligned}
& f(n)=1+2+3+4+5+6+7+8+9+2=47 \\
& f(f(n))=4+7=11 \\
& f(f(f(n)))=1+1=2
\end{aligned}
$$

Therefore, $g(1234567892)=2$.

Input

Each line of input contains a single positive integer n at most $2,000,000,000$. Input is terminated by $n=0$ which should not be processed.

Output

For each such integer, you are to output a single line containing $g(n)$.

Sample Input

2
11
47
1234567892
0

Sample Output

