Consider rectangular coordinate system and point $L(X, Y)$ which is randomly chosen among all points in the area A which is defined in the following manner: $\mathrm{A}=\{(x, y) \mid x \in[-a ; a] ; y \in[-b ; b]\}$. What is the probability P that the area of a rectangle that is defined by points $(0,0)$ and (X, Y) will be greater than S ?

Input

The number of tests $N \leq 200$ is given on the first line of input. Then N lines with one test case on each line follow. The test consists of 3 real numbers $a>0, b>0$ ir $S \geq 0$.

Output

For each test case you should output one number P and percentage '\%' symbol following that number on a single line. P must be rounded to 6 digits after decimal point.

Sample Input

3

10520
111
220

Sample Output

23.348371\%
0.000000\%
100.000000\%

