You're given a square matrix M. Elements of this matrix are $M_{i j}$: $\{0<i<n, 0<j<n\}$. In this problem you'll have to find out whether the given matrix is symmetric or not.

Definition: Symmetric matrix is such a matrix that all elements of it are non-negative and symmetric with relation to the center of this matrix. Any other matrix is considered to be non-symmetric. For example:

$$
\begin{aligned}
M & =\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 0 & 2 \\
3 & 1 & 5
\end{array}\right] \text { is symmetric } \\
M & =\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 0 & 2 \\
0 & 1 & 5
\end{array}\right] \text { is not symmetric, because } 3 \neq 0
\end{aligned}
$$

All you have to do is to find whether the matrix is symmetric or not. Elements of a matrix given in the input are $-2^{32} \leq M_{i j} \leq 2^{32}$ and $0<n \leq 100$.

Input

First line of input contains number of test cases $T \leq 300$. Then T test cases follow each described in the following way. The first line of each test case contains n - the dimension of square matrix. Then n lines follow each of then containing row i. Row contains exactly n elements separated by a space character. j-th number in row i is the element $M_{i j}$ of matrix you have to process.

Output

For each test case output one line 'Test \#t: $\quad S$ '. Where t is the test number starting from 1 . Line S is equal to 'Symmetric' if matrix is symmetric and 'Non-symmetric' in any other case.

Sample Input

2
$\mathrm{N}=3$
513
202
315
$\mathrm{N}=3$
513
202
015

Sample Output

Test \#1: Symmetric.
Test \#2: Non-symmetric.

