Given n integers you can generate 2^{n-1} non-empty subsets from them. Determine for how many of these subsets the product of all the integers in that is a perfect square. For example for the set $\{4,6,10,15\}$ there are 3 such subsets. $\{4\},\{6,10,15\}$ and $\{4,6,10,15\}$. A perfect square is an integer whose square root is an integer. For example $1,4,9,16, \ldots$.

Input

Input contains multiple test cases. First line of the input contains $T(1 \leq T \leq 30)$ the number of test cases. Each test case consists of 2 lines. First line contains $n(1 \leq n \leq 100)$ and second line contains n space separated integers. All these integers are between 1 and 10^{15}. None of these integers is divisible by a prime greater than 500 .

Output

For each test case output is a single line containing one integer denoting the number of non-empty subsets whose integer product is a perfect square. The input will be such that the result will always fit into signed 64 bit integer.

Sample Input

4
3
235
3
61015
4
461015
3
222

Sample Output

0
1
3
3

