I hope you know the beautiful Union-Find structure. In this problem, you're to implement something similar, but not identical.

The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:

$1 p q$	Union the sets containing p and q. If p and q are already in the same set, ignore this command.
$2 p q$	Move p to the set containing q. If p and q are already in the same set, ignore this command.
$3 p$	Return the number of elements and the sum of elements in the set contain- ing p.

Initially, the collection contains n sets: $\{1\},\{2\},\{3\}, \ldots,\{n\}$.

Input

There are several test cases. Each test case begins with a line containing two integers n and m ($1 \leq n, m \leq 100,000$), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, $1 \leq p, q \leq n$. The input is terminated by end-of-file (EOF).

Output

For each type-3 command, output 2 integers: the number of elements and the sum of elements.

Explanation

Initially: $\{1\},\{2\},\{3\},\{4\},\{5\}$
Collection after operation $112:\{1,2\},\{3\},\{4\},\{5\}$
Collection after operation 23 4: $\{1,2\},\{3,4\},\{5\}$ (we omit the empty set that is produced when taking out 3 from \{3\})
Collection after operation 13 5: \{1,2\}, \{3,4,5\}
Collection after operation $241:\{1,2,4\},\{3,5\}$

Sample Input

57

112
234
135
34
241
34
33

Sample Output

312
37
28

