There is a matrix containing at most 10^6 elements divided into r rows and c columns. Each element has a location (x,y) where $1 \le x \le r$, $1 \le y \le c$. Initially, all the elements are zero. You need to handle four kinds of operations:

$\boxed{1 x_1 y_1 x_2 y_2 v}$	Increment each element (x, y) in submatrix (x_1, y_1, x_2, y_2) by v $(v > 0)$
	0)
$2 x_1 y_1 x_2 y_2 v$	Set each element (x, y) in submatrix (x_1, y_1, x_2, y_2) to v
$3 x_1 y_1 x_2 y_2$	Output the <i>summation</i> , <i>min</i> value and <i>max</i> value of submatrix
	(x_1, y_1, x_2, y_2)

In the above descriptions, submatrix (x_1, y_1, x_2, y_2) means all the elements (x, y) satisfying $x_1 \le x \le x_2$ and $y_1 \le x \le y_2$. It is guaranteed that $1 \le x_1 \le x_2 \le r$, $1 \le y_1 \le y_2 \le c$. After any operation, the sum of all the elements in the matrix does not exceed 10^9 .

Input

There are several test cases. The first line of each case contains three positive integers r, c, m, where m ($1 \le m \le 20,000$) is the number of operations. Each of the next m lines contains a query. There will be at most twenty rows in the matrix. The input is terminated by end-of-file (EOF).

Output

For each type-3 query, print the summation, min and max.

Sample Input

- 4 4 8
- 1 1 2 4 4 5
- 3 2 1 4 4
- 1 1 1 3 4 2
- 3 1 2 4 4
- 3 1 1 3 4
- 2 2 1 4 4 2
- 3 1 2 4 4
- 1 1 1 4 3 3

Sample Output

- 45 0 5
- 78 5 7
- 69 2 7
- 39 2 7