12615 Fantastic Network

An undirected weighted graph G = (V, E) is defined as a **Fantastic** network if it has the following properties:

- 1. The graph is connected.
- 2. The **degree** of any node is at most **6**.
- 3. It may or may not contain **cycles**, but the **length** of any **cycle** (if exists) in this network will be **3**. The nodes which are part of at least one **cycle** are called **fine** nodes.
- 4. The **degree** of any **fine** node can be at most 3.

Here, **cycle** is defined as a path $\langle v_0, v_1, \dots, v_k \rangle$ in any graph such that the following statements hold:

- 1. $k \geq 3$. (k is the **length** of the **cycle**)
- 2. $v_0 = v_k$.
- 3. For each i ($0 \le i < K$) v_i and v_{i+1} are connected by an edge.
- 4. v_1, \ldots, v_k are distinct.

An **edge dominating set** for an undirected graph G = (V, E) is a subset F of E such that every edge not included in F is adjacent to (i.e. shares a vertex with) some edge in F. The **weight** of an **edge dominating set** is the sum of the weights of all edges in that set. Given a **Fantastic** network with positive edge weights, you need to determine the weight of the **minimum weight edge dominating set**.

Input

First line of the input contains a positive integer T ($T \le 100$). The first line of each of the T cases contains two integers N ($2 \le N \le 5000$) and M ($1 \le M \le 2 * N$), representing the number of nodes and edges, respectively, in a Fantastic network. Each of the following M lines contains 3 integers u_i , v_i , w_i , which means there is an edge from u_i to v_i ($1 \le u_i$, $v_i \le n$) with weight w_i ($1 \le w_i \le 10000$).

Output

For each case, print a line of the form 'Case x: y', where x is the case number and y is the weight of **minimum weight edge dominating set** of the given Fantastic network.

Sample Input

2

3 2

1 2 1

1 3 2

7 6

1 2 2

1 3 1

- 2 4 2
- 2 5 1
- 3 6 2
- 3 7 1

Sample Output

Case 1: 1

Case 2: 2