You are responsible for ordering a large pizza for you and your friends. Each of them has told you what he wants on a pizza and what he does not; of course they all understand that since there is only going to be one pizza, no one is likely to have all their requirements satisfied. Can you order a pizza that will satisfy at least one request from all your friends?

The pizza parlor you are calling offers the following pizza toppings; you can include or omit any of them in a pizza:

Input Code	Topping
A	Anchovies
B	Black Olives
C	Canadian Bacon
D	Diced Garlic
E	Extra Cheese
F	Fresh Broccoli
G	Green Peppers
H	Ham
I	Italian Sausage
J	Jalapeno Peppers
K	Kielbasa
L	Lean Ground Beef
M	Mushrooms
N	Nonfat Feta Cheese
O	Onions
P	Pepperoni

Your friends provide you with a line of text that describes their pizza preferences. For example, the line
$+\mathrm{O}-\mathrm{H}+\mathrm{P}$;
reveals that someone will accept a pizza with onion, or without ham, or with pepperoni, and the line $-\mathrm{E}-\mathrm{I}-\mathrm{D}+\mathrm{A}+\mathrm{J}$;
indicates that someone else will accept a pizza that omits extra cheese, or Italian sausage, or diced garlic, or that includes anchovies or jalapenos.

Input

The input consists of a series of pizza constraints.
A pizza constraint is a list of 1 to 12 topping constraint lists each on a line by itself followed by a period on a line by itself.

A topping constraint list is a series of topping requests terminated by a single semicolon.
An topping request is a sign character (+/-) and then an uppercase letter from 'A' to ' P '.

Output

For each pizza constraint, provide a description of a pizza that satisfies it. A description is the string 'Toppings: ' in columns 1 through 10 and then a series of letters, in alphabetical order, listing the toppings on the pizza. So, a pizza with onion, anchovies, fresh broccoli and Canadian bacon would be described by:

Toppings: ACFO
If no combination toppings can be found which satisfies at least one request of every person, your program should print the string

No pizza can satisfy these requests.
on a line by itself starting in column 1 .

Sample Input

$+A+B+C+D-E-F-G-H ;$
$-\mathrm{A}-\mathrm{B}+\mathrm{C}+\mathrm{D}-\mathrm{E}-\mathrm{F}+\mathrm{G}+\mathrm{H}$;
$-A+B-C+D-E+F-G+H$;
$+A+B+C+D ;$
$+\mathrm{E}+\mathrm{F}+\mathrm{F}+\mathrm{H}$;
$+\mathrm{A}+\mathrm{B}-\mathrm{G}$;
$+0+J-F ;$
$+\mathrm{H}+\mathrm{I}+\mathrm{C}$;
+P ;
$+\mathrm{O}+\mathrm{M}+\mathrm{L}$;
$+\mathrm{M}-\mathrm{L}+\mathrm{P}$;
$+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$;
$+\mathrm{E}+\mathrm{F}+\mathrm{F}+\mathrm{H}$;
$+\mathrm{A}+\mathrm{B}-\mathrm{G}$;
$+\mathrm{P}-\mathrm{O}$;
$+\mathrm{O}+\mathrm{J}-\mathrm{F}$;
$+\mathrm{H}+\mathrm{I}+\mathrm{C}$;
+P;
+0;
$+0+\mathrm{M}+\mathrm{L}$;
-0-P;
$+\mathrm{M}-\mathrm{L}+\mathrm{P}$;

Sample Output

Toppings:
Toppings: CELP
No pizza can satisfy these requests.

