Consider a number maze represented as a two dimensional array of numbers comprehended between 0 and 9 , as exemplified below. The maze can be traversed following any orthogonal direction (i.e., north, south, east and west). Considering that each cell represents a cost, then finding the minimum cost to travel the maze from one entry point to an exit point may pose you a reasonable challenge.

Your task is to find the minimum cost value to go from the top-

0	3	1	2	9
7	3	4	9	9
1	7	5	5	3
2	3	4	2	5

Input

The input file contains several mazes. The first input line contains a positive integer defining the number of mazes that follow. Each maze is defined by: one line with the number of rows, N; one line with the number of columns, M; and N lines, one per each row of the maze, containing the maze numbers separated by spaces.

Output

For each maze, output one line with the required minimum value.

Sample Input

2
4
5
03129
73499
17553
23425
1
6
012345

Sample Output

